

Einführung in die Betriebswirtschaftslehre

Teil III – Prozessdimension des Managements

Kapitel 3

Entscheidungstatbestände betrieblicher Funktionen

Entscheidungsprobleme betrieblicher Funktionsbereiche

- 1. Planung und Entscheidung in der Materialwirtschaft
- 2. Produktionsprogrammplanung in der Fertigung
- 3. **Absatzorientierte** Produktplanung und –gestaltung
- 4. Investition- und Finanzierung

Kapitel 3.1

Planung und Entscheidung in der Materialwirtschaft

(S.397-408)

Grundsätzliches

Zu den zentralen Funktionen der betrieblichen **Materialwirtschaft** gehören:

- Versorgung des Unternehmens mit Materialien
- Innerbetriebliche Bereitstellung i.R. des Produktionsprozesses

Die Sicherstellung der bedarfsgerechten Materialversorgung umfasst:

- **Beschaffung** und **Lagerhaltung** des für die Leistungserstellung notwendigen Materials
- Bewegung des Materials zum Bedarfsort (Transport)

Grundsätzliches

Hauptaufgabe

Erforderliche Materialien in der benötigten Menge und Qualität zum richtigen Zeitpunkt am richtigen Ort zur Verfügung zu stellen.

• Sachziel: Erfüllung der Sicherungsaufgabe

Formalziel

hohe Wirtschaftlichkeit im materialwirtschaftlichen Bereich, Optimierung der mit der Beschaffung/Bereitstellung des Materials verbundenen Kosten:

- Beschaffungskosten
- Lagerhaltungskosten
- innerbetriebliche Transportkosten

Ermittlung des **Materialbedarfs** als Voraussetzung für die weiteren Teilplanungen und Entscheidungen der Materialwirtschaft:

- → Planung der Bestellmengen
- → Planung der *Beschaffungszeitpunkte*
- → Optimierung des *Lagerhaltungssystems*

ABC-Analyse

- Instrument zur Materialklassifizierung (Muster aus der Praxis)
- A Güter: 10-20% der Gesamtmenge aller Materialarten, repräsentieren ca. 70-80% des Gesamtverbrauchswert
- B Güter: 20-30% der Gesamtmenge verursachen 10-20% des Gesamtverbrauchswertes
- C Güter: Repräsentieren nur 5-10% des Gesamtverbrauchswert, dafür aber etwa 50-70% der Gesamtmenge aller Materialarten

→ Bildung der Klassengrenzen nur **ex post!**

A - Güter

Exakte Bedarfsabschätzungen auf Basis aufwändiger *programm-orientierter* Methoden

• B - Gütern

Bedarfsmengen werden *verbrauchsorientiert* (auf der Grundlage von Vergangenheitswerten) ermittelt.

• C - Güter

Grobe Abschätzung des Bedarfs anhand von Erfahrungswerten.

Beispiel ABC-Analyse:

Es besteht ein Bedarf für 10 verschiedene Materialarten, die mit ihren mengen- und wertmäßigen Periodengrößen in folgender Abbildung dargestellt sind:

Material-Nr.	Verbrauch (ME)	Preis (€/ME)	Gesamtwert (€)	Rang
101	5.000	1,40	7.000	5
102	1.000	1,50	1.500	10
103	400	22,10	8.840	3
104	300	200,00	60.000	2
105	15.000	0,15	2.250	8
106	24.500	0,16	3.920	7
107	1.400	1,50	2.100	9
108	45.000	0,10	4.500	6
109	32.000	2,50	80.000	1
110	700	12,50	8.750	4

Beispiel ABC-Analyse:

Rang	Material- Nr.	Positionenanteil kumuliert (in %)	Gesamtwert (€)	Gesamtwert kumuliert (€)	Gesamtwert kumuliert (in %)	Klasse
1	109	10	80.000	80.000	44,7	
2	104	20	60.000	140.000	78,3	A
3	103	30	8.840	148.840	83,2	
4	110	40	8.750	157.590	88,1	В
5	101	50	7.000	164.590	92,0	
6	108	60	4.500	169.090	94,5	
7	106	70	3.920	173.010	96,7	
8	105	80	2.250	175.260	98,0	C
9	107	90	2.100	177.360	99,2	
10	102	100	1.500	178.860	100,0	

Beispiel ABC-Analyse:

Aufgabe zu Kapitel 3.1

TEIL B: Aufgabensammlung

Aufgabe – ABC-Analyse

XYZ - Analyse

- klassifiziert Materialarten nach ihrem Verbrauchsverlauf
- → Charakteristische Verlaufsmuster als Entscheidungshilfe für die Wahl der **Bereitstellungsform**.
- X Güter: regelmäßiger weitgehend schwankungsfreier Bedarfsverlauf, (relativ) genauen Bedarfsvorhersagen; geeignet für einsatzsynchrone Beschaffung ("Just-in-Time"-Prinzip).
- **Y Güter:** trendförmiger oder saisonal schwankender Bedarfsverlauf; mittlere Prognosegenauigkeit auf (Vorratsbeschaffung sinnvoll).
- **Z Güter:** zufälliger Bedarfsverlauf, nicht vorhersehbare Schwankungen (fallweise Beschaffung im Bedarfsfall).

Durch Kombination der ABC- und XYZ-Analyse kann eine differenzierte Beschaffungs- und Lagerhaltungsstrategie erarbeitet werden!

	A - Material	B - Material	C - Material
X - Material	bedarfssynchrone Beschaffung, just in time		
Y - Material			Lager
Z - Material	Einzelbeschaffung		

(2) Material bedarfser mittlung

- A. Verbrauchsorientierte (stochastische) Verfahren
- → Orientierung am *bisherigen* Materialverbrauchs
- → Vergangenheitswerte (Extrapolation)

Konstantmodell (Mittelwertbildung)

t	1	2	3	4	5	6	7
Monat	Januar	Februar	März	April	Mai	Juni	Juli
Verbrauch in kg	900	1.100	1.000	1.200	1.300	1.400	1.500

- Durchschnittverbrauch 8.400 kg/7 = 1.200 kg beträgt
- Monat August: 1.200 kg

<u>Trendmodell</u> (gleitender Durchschnittswerte)

→ z.B. letzte vier Monate für die Bedarfsermittlung

t	1	2	3	4	5	6	7
Monat	Januar	Februar	März	April	Mai	Juni	Juli
Verbrauch in kg	900	1.100	1.000	1.200	1.300	1.400	1.500

- Monat August: (1.200 + 1.300 + 1.400 + 1.500)/4 = 5.400/4 = 1.350 kg.

→ Entwicklungstrend wird berücksichtigt

Aber:	
Aber:	

"Möchte beispielsweise ein Eiscremehersteller seinen Sahnebedarf für die Eisproduktion im Monat Juni ermitteln, so kann er sich anden Verbrauchsmengen der letzten sechs Junimonate (und nicht der letzten sechs Kalendermonate) orientieren".

Darüber hinaus existieren zahlreiche weitere mathematisch-statistische Verfahren, mit denen die Prognosequalität noch gesteigert werden kann

→ Die verbrauchsorientierte Verfahren eignen sich vor allem für die Bedarfsermittlung von weniger wertvollen Materialien.

B. Programmorientierte (deterministische) Verfahren

- → Ableitung des Materialbedarfs aus kurzfristigem Produktionsprogramm
- → In der Praxis: vor allem bei hochwertigen Materialien (A-Güter).
- **Produktionsplan:** welche Produkte wann und in welchen Mengen
- Stückliste: welches Material in welcher Menge für ein Stück

→ Siehe folgendes Beispiel!

Stückliste

X

Produktionsplan

z.B.

Materialbedarf

z.B. Stückliste für Artikel-Nr. W 200

Produktionsplan Sept. – Dez.

Teile-Nr.	Einheit
A 473	10 Stück
A 481	14 Stück
B 096	2 m
L 320	0,04 kg

ArtNr.	Sept.	Okt.	Nov.	Dez.
W 100	1.000	1.000	900	800
W 150	500	800	800	400
W 200	2.000	2.300	2.300	2.600
W 202	700	600	600	500

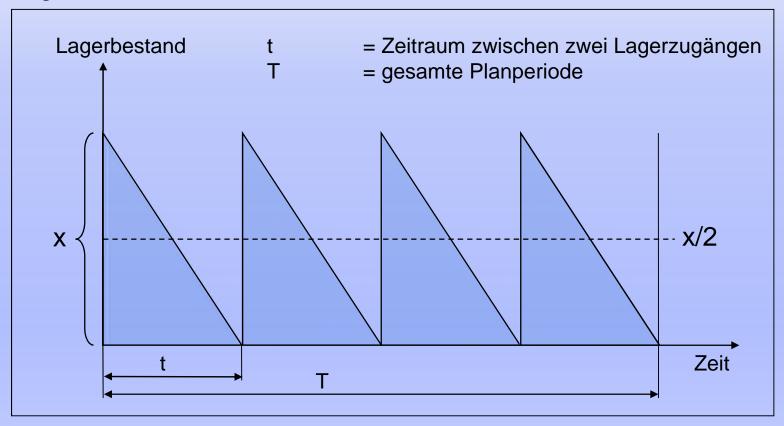
Beispiel: Materialbedarf Teile-Nr. A 473 für Atr.-Nr. W 200

im Sept.	10 Stück	Χ	2.000	=	20.000 Stück
im Okt.	10 Stück		2.300	=	23.000 Stück
im Nov.	10 Stück	Χ	2.300	=	23.000 Stück
im Dez.	10 Stück	Χ	2.600	=	26.000 Stück

(3) Optimale Bestellmenge

- Nach der Ermittlung des Materialbedarfs sind Entscheidungen bzgl. der zu bestellenden Mengen zu treffen
- Durch die Bestellmengenpolitik ergeben sich unterschiedliche (gegenläufige) Kostenauswirkungen:

	Kleine Bestellmenge	Einmalige Bestellung (theoretisch)
Lagerhaltungskosten*	niedrig	hoch
Bestellfixe Kosten	hoch	niedrig


^{*} Kapitalzinsen und Lagerkosten (Raummiete, Schwund, Kontrolle etc.)

- Gegenläufige Kostenentwicklung
- **Ziel:** Σ Lagerhaltungs- und bestellfixe Kosten minimieren!
- Grundmodell zur Ermittlung kostenoptimaler Bestellmengen
- 1. Bedarfsmenge M pro Planperiode T; (T=1)
- 2. Bestellmengen x (konstant)
- 3. Lagerabgangsraten (konstant); Ø-Lagerbestand = x/2
- 4. Einstandspreise p (unabhängig von Bestellmenge/-zeitpunkt)
- 5. Fixe Kosten pro Bestellung kf (= auftragsfixe Kosten)
- 6. Lagerkostensatz q und Zinskostensatz z (konstant) pro 100 GE

Lagerbestand

Jahresbedarf M = 1.440 Mengeneinheiten (ME) und Bestellmenge x = 360 ME

→ 4 Bestellungen/Jahr; Lagerdurchschnittsbestand = 180 ME.

Modell

$$K(x) = \underbrace{\frac{M}{x} \cdot k^{f}}_{bestellfixe} + \underbrace{\frac{x}{2} \cdot p \cdot \frac{l+z}{100}}_{bestellfixe}$$

$$\underbrace{\frac{l+z}{100}}_{bestellfixe} + \underbrace{\frac{x}{2} \cdot p \cdot \frac{l+z}{100}}_{constant}$$

Minimum

$$K'(x) = -\frac{M}{x^2} \cdot k^f + p \cdot \frac{z+l}{200}$$

Optimale Bestellmenge

$$\left| x_0 \right| = \sqrt{\frac{200 \cdot M \cdot k^{f}}{p \cdot (z + l)}} \right|$$

Optimale Lagerzeit

$$t_0 = \frac{x_0}{M} = \sqrt{\frac{200 \cdot k^f}{p \cdot (z + l) \cdot M}}$$

Optimale Bestellhäufigkeit

$$n_0 = \frac{1}{t_0} = \frac{M}{x_0} = \sqrt{\frac{p \cdot (z+l) \cdot M}{200 \cdot k^f}}$$

Beispiel: Bestimmung der optimalen Bestellmenge

Beispielparameter: M = 2.250 ME; p = 30 €/ME; kf = 100 €; I = 15; z = 9

Optimale Bestellmenge:

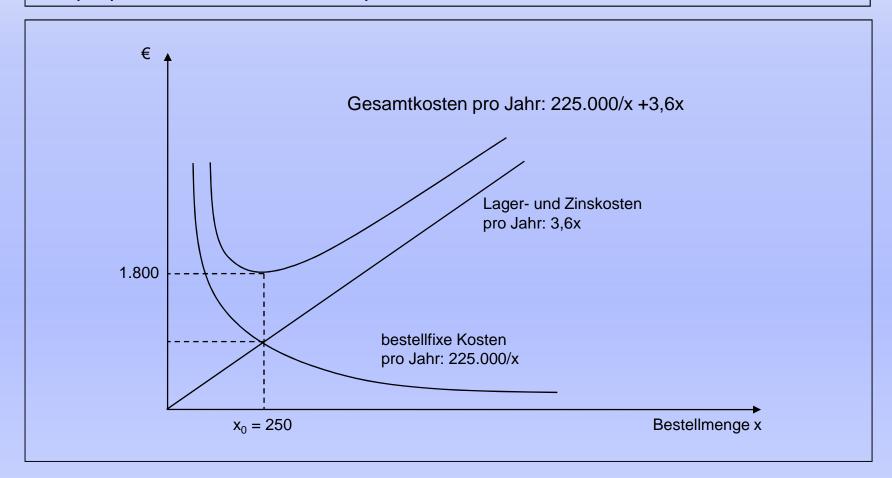
$$x_0 = \sqrt{\frac{200 \cdot 2.250 \cdot 100}{30 \cdot (9 + 15)}} = 250 \text{ ME}$$

Gesamtkosten pro Jahr:

$$K(x) = \frac{225.000}{x} + 3.6x = \frac{225.000}{250} + 3.6 \cdot 250 = 1.800 \in$$

Optimale Bestellhäufigkeit:

$$n_0 = \frac{M}{x_0} = \frac{2.250}{250} = 9$$
 Bestellungen


Optimale Lagerzeit:

$$t_0 = \frac{x_0}{M} = \frac{250}{2.250} = 0.11 \ Jahre$$
 (also ca. 40 Tage)

Beispiel: Bestimmung der optimalen Bestellmenge

Beispielparameter: M = 2.250 ME; p = 30 €/ME; kf = 100 €; I = 15; z = 9

Schwächen des Modells

- hoher Abstraktionsgrad
- von der Bestellmenge unabhängiger (konstanter) Einstandspreis.

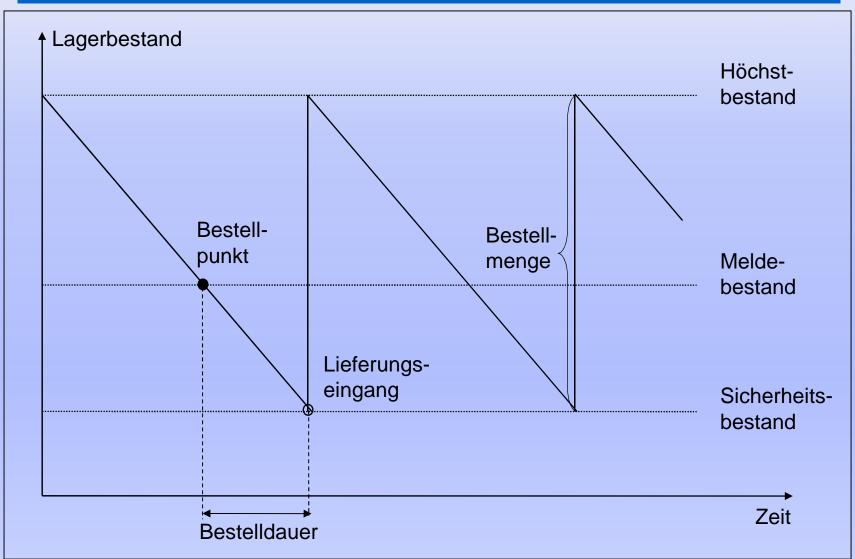
In der Praxis häufig:

- beschränkt lagerfähige Materialien
- vorgegebene Mindestbestellmengen

Aufgabe zu Kapitel 3.1

TEIL B: Aufgabensammlung

Aufgabe – Optimale Bestellmenge



(4) Bestellpunktsystem

Lagerbestand: aus Kostengründen nicht zu hoch, aus Risikogründen nicht zu tief!

- Auslösung der Bestellung bei Erreichen eines vorher bestimmten Schwellenwertes der Lagermenge (**Meldebestand**; bzw. Bestellpunktbestand).
- Meldebestand entspricht (theoretisch) dem Materialverbrauch zwischen Bestellzeit- und Verfügbarkeitszeitpunkt des Materials (= Bestelldauer)
- Fehlmengenrisiko!
- → Meldebestand in der Praxis etwas höher ansetzen (Sicherheitsbestand)
- Bestellmenge: optimale Bestellmenge oder gemäß Lager-Sollbestand

