Übersicht -Lehrveranstaltung

- 1. Einfache Tests bei Binomialverteilung (relevant)
- 2. Gauß-Test
- 3. t-Test
- 4. Anteilswerttest
- 5. Varianztest
- 6. Kontingenztabelle, 4-Felder Matrix
- 7. Chi-Quadrat-Unabhängigkeitstest
- 8. Chi-Quadrat-Anpassungstest
- 9. Regressionsanalyse/-test

10. p-Wert

<u>Fallbeschreibung</u>

Ein Unternehmen lässt Überraschungseier mit WM-Figuren herstellen und verspricht, dass in mindestens der Hälfte seiner Ü-Eier eine Fußballfigur enthalten ist. Peter, ein Master-Student der Wirtschaftswissenschaften, kauft 50 Ü-Eier und findet in 20 davon WM-Figuren. Er möchte nun die Behauptung des Unternehmens (Signifikanzniveau α = 5 %) testen.

Testgröße T: "Anzahl WM-Figuren in Überraschungseiern" T ist eine B(50;0,5)-verteilte Zufallsgröße

$$H_0: p \ge 0.5$$
 $H_1: p < 0.5$

Testart: einseitiger (<u>links</u>seitiger) Signifikanztest; SN α = 5%

Ermittlung kritischer Wert k aus summierter Binomial-Tabelle

Hinweis: k so, dass Wahrscheinlichkeitkeit $\leq \alpha$

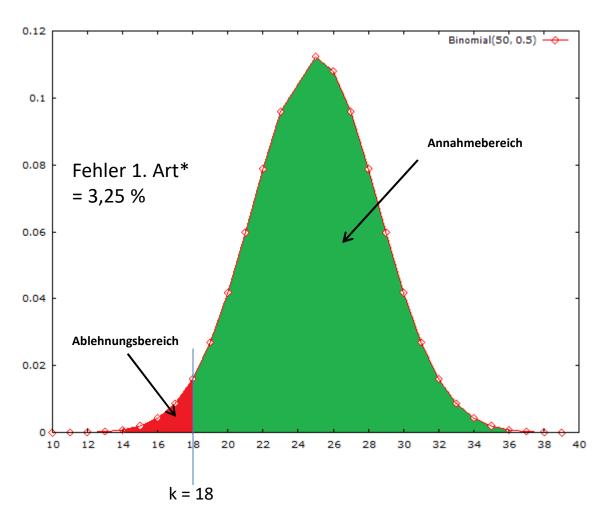
k	p 0,01	0,05	0,1	0,2	0,25	0,3	0,4	0,5
0	0,6050	0,0769	0,0052	0,0000	0,0000	0,0000	0,0000	0,0000
1	0,9106	0,2794	0,0338	0,0002	0,0000	0,0000	0,0000	0,0000
15			1,0000	0,9692	0,8369	0,5692	0,0955	0,0033
16				0,9856	0,9017	0,6839	0,1561	0,0077
17				0,9937	0,9449	0,7822	0,2369	0,0164
18				0,9975	0,9713	0,8594	0,3356	0,0325
19				0,9991	0,9861	0,9152	0,4465	0,0595

>

$$P(X \le 18) = 0.0325 < \alpha = 0.05$$

Annahmebereich H₀: [19;50] Ablehnungsbereich H₀: [0; 18] Bei linksseitigem Test gehört k immer zum Ablehnungsbereich

- \rightarrow H₀ wird angenommen; also Aussage des Herstellers wird angenommen!
- → Die Abweichung ist zufällig und nicht signifikant!



*Fehler 1. Art: H₀ wird abgelehnt, obwohl H₀ richtig ist

Fallbeschreibung

Auf vielfache Nachfrage bietet das Parkrestaurant mehr fleischlose Gerichte als früher an. Durch einen Test ($\alpha = 5$ %) soll herausgefunden werden, ob sich dadurch der Anteil der verkauften fleischlosen Gerichte gegenüber bisher (bis zu 30%) erhöht hat. Hierzu werden die Essensbestellungen von 50 zufällig ausgewählten Gästen ausgewertet; hierunter befinden sich 20 Bestellungen fleischloser Gerichte.

Testgröße T: "Anzahl der Personen, die fleischlose Gerichte bestellen" T ist eine B(50;0,3)-verteilte Zufallsgröße

$$H_0: p \le 0.3$$
 $H_1: p > 0.3$

Testart: einseitiger (<u>rechts</u>seitiger) Signifikanztest; SN α = 5%

Ermittlung k-Wert aus Tabelle summierte Binomialverteilung

1

Signifikanztest - Binomialverteilung

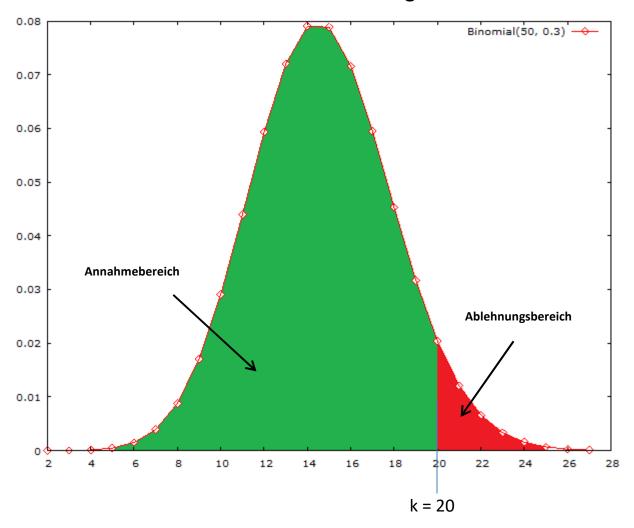
Hinweis: k so, dass Wahrscheinlichkeitkeit ≥ 1 - $\alpha = 0.950$

k	р 0,01	0,05	0,1	0,2	0,25	0,3	0,4	0,5
0	0,6050	0,0769	0,0052	0,0000	0,0000	0,0000	0,0000	0,0000
1	0,9106	0,2794	0,0338	0,0002	0,0000	0,0000	0,0000	0,0000
18				0,9975	0,9713	0,8594	0,3356	0,0325
19				0,9991	0,9861	0,9152	0,4465	0,0595
20				0,9997	0,9937	0,9522	0,5610	0,1013
21				0,9999	0,9974	0,9749	0,6701	0,1611

>

Annahmebereich H₀: [0;20] Ablehnungsbereich H₀: [21; 50] Bei rechtsseitigem Test gehört k immer zum Annahmebereich

→ H₀ wird angenommen; der Anteil fleischloser Gerichte ist nicht gestiegen!



Ermittlung des kritischen Wertes k

B (n;p)	Linksseitiger Test	Rechtsseitiger Test
p bis 50 %	k: ≤ α	k: ≥ 1-α
p größer 50 %	k: ≥ 1-α (k rechts ablesen)	k: $\leq \alpha$ (k rechts ablesen

k	p 0,01	0,05	0,1	0,2	0,25	0,3	0,4	0,5	k	n
9		0,9998	0,9755	0,4437	0,1637	0,0402	0,0008	0,0000	40	
10		1,0000	0,9906	0,5836	0,2622	0,0789	0,0022	0,0000	39	
11			0,9968	0,7107	0,3816	0,1390	0,0057	0,0000	38	
12			0,9990	0,8139	0,5110	0,2229	0,0133	0,0002	37	
13			0,9997	0,8894	0,6370	0,3279	0,0280	0,0005	36	
14			0,9999	0,9393	0,7481	0,4468	0,0540	0,0013	35	
15			1,0000	0,9692	0,8369	0,5692	0,0955	0,0033	34	
16				0,9856	0,9017	0,6839	0,1561	0,0077	33	
17				0,9937	0,9449	0,7822	0,2369	0,0164	32	50
18				0,9975	0,9713	0,8594	0,3356	0,0325	31	30
19				0,9991	0,9861	0,9152	0,4465	0,0595	30	
20				0,9997	0,9937	0,9522	0,5610	0,1013	29	
21				0,9999	0,9974	0,9749	0,6701	0,1611	28	
25					1,0000	0,9991	0,9427	0,5561	24	
26						0,9997	0,9686	0,6641	23	
27						0,9999	0,9840	0,7601	22	
28						1,0000	0,9924	0,8389	21	
38								1,0000	11	
k	p 0,99	0,95	0,9	0,8	0,75	0,7	0,6	0,5	k	n

z.B. $\alpha = 0.05$ p = 0.3p = 0.6

<u>Fallbeschreibung</u>

Ein Teilnehmer an einem Glücksspiel vermutet, dass der bei dem Spiel verwendete Würfel kein Laplace-Würfel ist. Um dieser Vermutung nachzugehen, würfelt er 100-mal und bestimmt die Anzahl Sechser (12 x Sechs). Ist der Würfel mit einem Signifikanzniveau von 5 % ein Laplace-Würfel?

$$H_0$$
: p = 1/6

$$H_1: p \neq 1/6$$

Testart: beidseitiger Signifikanztest; SN α = 5%

Ermittlung k-Werte aus Tabelle summierte Binomialverteilung

Signifikanztest - Binomialverteilung

Hinweis

 k_1 (linker Grenzwert) so, dass Wahrscheinlichkeitkeit $\leq \alpha/2 = 0.025$

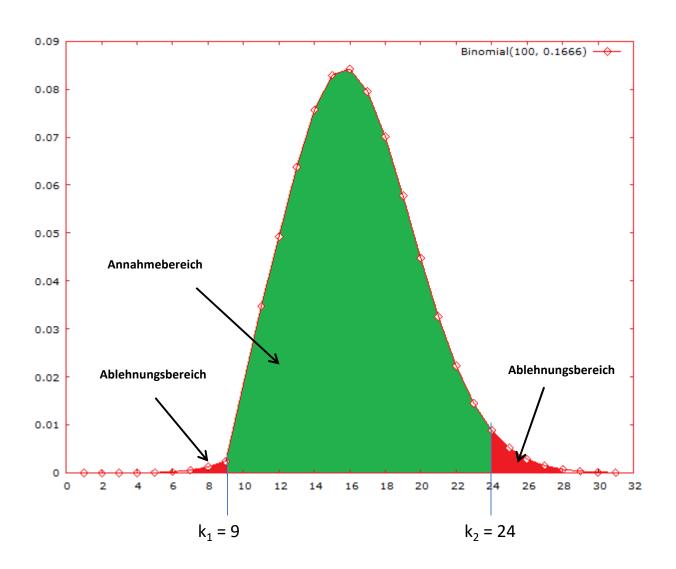
 k_2 (rechts Grenzwert) so, dass Wahrscheinlichkeitkeit ≥ 1 - $\alpha/2 = 0.975$

n	k	p 0,01	0,05	0,1	1/6	0,2	0,25	0,3	0,5	k	n
	8		0,9369	0,3209	0,0095	0,0009	0,0000	0,0000	0,0000	91	
	9		0,9718	0,4513	0,0213	0,0023	0,0000	0,0000	0,0000	90	
100											100
	23			1,0000	0,9621	0,8109	0,3711	0,0755	0,0000	76	
	24				0,9783	0,8686	0,4617	0,1136	0,0000	<i>7</i> 5	
	25				0,9881	0,9125	0,5535	0,1631	0,0000	74	
n	k	p 0,99	0,95	0,9	5/6	0,8	0,75	0,7	0,5	k	n

Annahmebereich H₀: [10;24]

Ablehnungsbereich H_0 : [0; 9] [25; 100]

→ H₀ wird angenommen (12 Sechser bei 100 Würfen); der Würfel ist fair, d.h. ein Laplace-Würfel



Hypothesentest Binomialverteilung

Fallbeschreibung

Die Polizei glaubt durch Schilder mit der Aufschrift "RADARKONTROLLE" den Anteil der Temposünder vor der Grundschule einer Stadt auf 2 % reduzieren zu können. Die Eltern bezweifeln dies. In einem Test werden 100 Fahrzeuge kontrolliert. Geben Sie die Testgröße sowie die Nullhypothese an und ermitteln Sie deren größtmöglichen Ablehnungsbereich auf einem 5 %-igen Signifikanzniveau.

Fallbeschreibung

Ein Hersteller von Chips für Einkaufswagen garantiert, dass der Anteil an Ausschuss höchstens 10 % beträgt. Ein Käufer findet unter 100 Chips 15 defekte. Kann er hieraus auf einem Signifikanzniveau von 5 % schließen, dass der Anteil an Ausschuss größer als 10 % ist?

Fallbeschreibung

Die Befragung der Studenten einer Hochschule zeigt im vorherigen Jahr, dass höchstens 5 % der befragten Studenten mit der Uni-Bibliothek unzufrieden waren. Man vermutet, dass die Unzufriedenheit zugenommen hat (n = 50; α = 5 %).

Fallbeschreibung

Eine Münze wird 50-mal geworfen, dabei tritt 30-mal Zahl auf. Kann man mit einer Irrtumswahrscheinlichkeit von 5% schließen, dass die Münze nicht ideal (fair) ist?