

Entscheidungstheorie

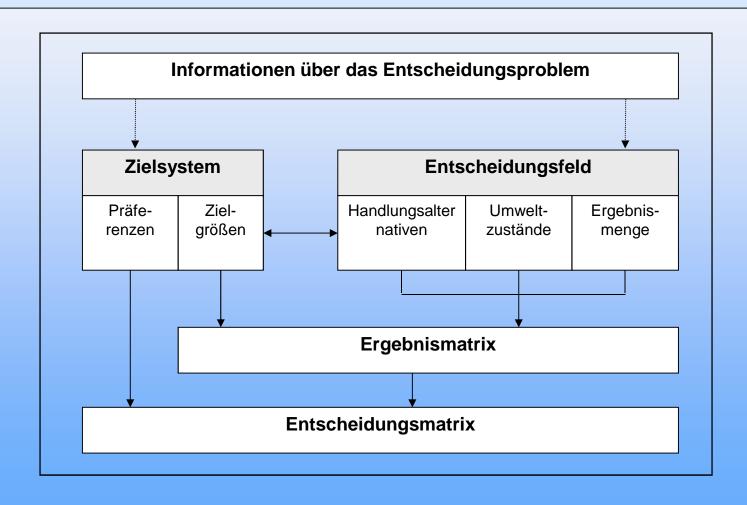
Grundlagen-Skript

Prof. Dr. Th. Hagenloch Hochschule Merseburg

Entscheidungstheoretische Fragestellungen

- Normative Entscheidungstheorie: Rationales Handeln des Entscheidungsträgers; Entscheidungsregeln. Entwicklung von "Richtlinien", wie sich ein Entscheidungsträger in einer bestimmten Entscheidungssituation verhalten soll.
- → Eine Entscheidung erscheint dann rational, wenn diejenige Handlungsalternative gewählt wird, die unter den gegebenen Bedingungen zur größten Zielerreichung führt.
- 2. **Deskriptive** Entscheidungstheorie will das Zustandekommen von Entscheidungen in der Realität aufzuzeigen (reales Entscheidungsverhalten) Enge Bezüge zur Psychologie, Soziologie und zur Organisationstheorie.

Grundmodell

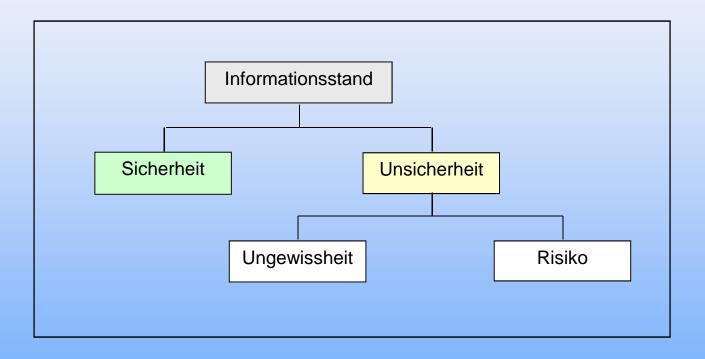


Grundmodell

Umweltzu stände Aktionen	s ₁ (p ₁)	s ₂ (p ₂)		s _n (p _n)
a_1	e ₁₁	e ₁₂	•••	e _{1n}
a_2	e ₂₁	e ₂₂	•••	e _{2n}
$a_{\rm m}$	e _{m1}	e _{m2}		e _{mn}

Ergebnismatrix (mit Wahrscheinlichkeiten)

Grundmodell



Bekanntheitsgrade über die Umweltzustände

Fallstudie

Siehe Vorlesung!

Fallstudie - Stadtfest

Heinz K. überlegt, wie er sich an dem diesjährigen Stadtfest aktiv beteiligen kann, um die Familienkasse aufzubessern. Hierbei zieht er in Erwägung, entweder einen Stand für Speisen oder einen Stand für Getränke einzurichten. Speisen und Getränke an einem Stand gleichzeitig anzubieten, ist hingegen unüblich. Aufgrund des hohen Arbeitsaufwandes, der mit der Bewirtung verbunden ist, überlegt Heinz K. außerdem, ob er eine Zusatzkraft einstellen soll.

Aktionen/Handlungsmöglichkeiten

- a₁ Stand mit Getränken einrichten und Zusatzkraft einstellen
- a₂ Stand mit Speisen einrichten und Zusatzkraft einstellen
- a₃ Stand mit Getränken einrichten, keine Zusatzkraft einstellen
- a₄ Stand mit Speisen einrichten, keine Zusatzkraft einstellen

Fallstudie - Stadtfest

Die allgemeine Konsumfreudigkeit der Besucher und das Wetter stellen relevante Umweltzustände dar, die wesentlichen Einfluss auf den Verkauf von Speisen und Getränken - und damit auf den realisierbaren Umsatz - ausüben. Heinz K. geht davon aus, dass bei gutem Wetter eine stärkere Nachfrage nach Getränken bestehen wird, bei schlechtem Wetter Speisen bevorzugt werden.

<u>Umweltzustände</u>

- s₁ hohe Konsumfreudigkeit und gutes Wetter
- s₂ hohe Konsumfreudigkeit und schlechtes Wetter
- s₃ geringe Konsumfreudigkeit und gutes Wetter
- s₄ geringe Konsumfreudigkeit und schlechtes Wetter

Fallstudie - Stadtfest

Heinz K. strebt als Zielgröße den Gewinn an, den er zu maximieren sucht. Für die Aufstellung der Ergebnismatrix ist zunächst die Ergebnisfunktion zu bestimmen. Ausgangspunkt hierbei sei folgende geschätzte monetäre Nachfrage:

	Konsumfreudigkeit					
	hoch un	d Wetter	niedrig und Wetter			
	gut	gut schlecht		schlecht		
Nachfrage Getränke	14.000	12.000	11.000	6.000		
Nachfrage Speisen	12.000	14.000	6.000	11.000		

Wird eine Zusatzkraft beschäftigt, kann die Nachfrage vollständig befriedigt werden. Ohne Zusatzkraft können nur maximal 10.000 € zu Umsatz werden. Weiterhin sei angenommen, dass variable Kosten in Höhe von 40% des Umsatzes zu erwarten sind. An fixen Kosten für Platzmiete und Verkaufsstand fallen 2.700 €, für die Zusatzkraft 1.500 EURO an.

Fallstudie - Stadtfest

Aufgaben:

- 1. Wie lautet die Ergebnisfunktion?
- 2. Stellen Sie die Ergebnismatrix unter der Annahme auf, dass für den Eintritt der Umweltzustände folgende Wahrscheinlichkeiten gelten $(p_1, p_3 = 35\%; p_2, p_4 = 15\%)!$
- 3. Wie entscheidet sich Heinz K., wenn er risikoneutral ist und sich am mathematischen Erwartungswert orientiert?

Lösungen 1.:

$$\begin{aligned} e_{ij} &= Umsatz(a_i, s_j) \cdot (1 - 0.4) - 2.700 - c(a_i) \cdot 1.500 \\ mit \quad c(a_i) &= \begin{cases} 1 \text{ für } i = 1, 2 \\ 0 \text{ für } i = 3, 4 \end{cases} \end{aligned}$$

Fallstudie - Stadtfest

Lösungen 2.:

Umwelt-	Konsumfreudigkeit					
zustände	hoch un	d Wetter	niedrig u	nd Wetter		
A1.:	gut	schlecht	gut	schlecht		
Aktionen	s_1	s_2	s_3	S_4		
	$p_1 = 0.35$	$p_2 = 0.15$	$p_3 = 0.35$	$p_4 = 0.15$		
Getränkestand mit Zusatzkraft (= a ₁)	4.200	3.000	2.400	-600		
Speisenstand mit Zusatzkraft (= a ₂)	3.000	4.200	-600	2.400		
Getränkestand ohne Zusatzkraft (= a ₃)	3.300	3.300	3.300	900		
Speisenstand ohne Zusatzkraft (=a ₄)	3.300	3.300	900	3.300		

Lösungen 3.: $\Phi(a_1) = 2.670$; $\Phi(a_2) = 1.830$; $\Phi(a_3) = 2.940$; $\Phi(a_4) = 2460 \rightarrow a_3$ ist optimal!

Grundlagen

Entscheidung bei	Nutzenfunktion	Spezifische Verfahren	
Sicherheit (ein Ziel)	-	Lineare Optimierung (Kap 2.2)	
Sicherheit (mehrere Ziele)	Additives Nutzenmodell (Kap. 2.3.1)	Zielgewichtung, Lexikographische Ordnung, "Körth"-Regel, Goal- Programming (Kap. 2.3.2)	
Ungewissheit	-	Maximin-, Maximax-, Hurwicz, Laplace-, Savage-Niehans-Regel (Kap. 3.2)	
Risiko	Erwartungsnutzen-Theorie (Kap. 4.4)	μ-Prinzip, (μ, σ)-Regel (Kap. 4.2/4.3) Theorem von Bayes (Kap. 5.2)	

Grundlagen

Eine Entscheidung bei Sicherheit ist dadurch charakterisiert, dass die Umwelt nur einen vorab bekannten Zustand einnehmen kann, dem je Zielart eindeutig ein Ergebniswert zugeordnet ist.

Ziel Aktion	\mathbf{z}_1	z_2	 $\mathbf{z}_{\mathbf{k}}$
a_1	e_1^{-1}	e_1^2	 e_1^{k}
a_2	e_2^{-1}	e_2^2	 e_2^{k}
	::		
a _m	e _m ¹	e _m ²	 e _m ^k

Zielgrößenmatrix (mit k Zielgrößen)

	Spezielle Entscheidungsregeln							
(1)	Zielgewichtung		Z ₁	z_2	z_3	z_4		
(2)	Lexikographische Ordnung	2	4	10	12	8		
(3)	Körth-Regel	a ₁		10	12	0		
(4)	O a al Dua ama manain a	a ₂	3	10	9	6		
(4)	Goal-Programming	a_3	9	8	6	9		
→ Dominanzprinzip!		a ₄	2	5	7	11		
/ Dominanzprinzip:	a ₅	2	4	4	10			

[→] a₂ und a₅ sind ineffizient!

Spezielle Entscheidungsregeln						
Zielgewichtung		Z ₁	Z ₂	z ₃	Z ₄	Ф(a _i)
1. Gewichtung der k Ziele mit den Anteilsge-	a ₁	2	5	8	10	5,4
wichten $\lambda_1,, \lambda_h,, \lambda_k$	a ₂	3	4	9	14	6,2
hierbei gilt $0 \le \lambda_h \le 1$ und $\sum_{h=1}^{k} \lambda_h = 1$	a_3	5	10	6	9	7,9
2. Maximierung der Zielfunktion:	a_4	2	5	10	8	5,2
	a ₅	6	4	4	6	5,0
$\Phi(a_i) = \sum_{h=1}^k \lambda_h \cdot e_i^h \to Max!$	λ _b	0,3	0,4	0,1	0,2	

 \rightarrow Alternativenreihenfolge $a_3 > a_2 > a_1 > a_4 > a_5$

→ zu Besonderheiten siehe Buch, S. 36 f.

Spezielle Entscheidungsregeln						
Lexikographische Ordnung		Z ₁	Z ₂	z ₃	Z ₄	
	a ₁	2	5	10	8	
	a ₂	3	4	9	14	
Zunächst dient das wichtigstes Ziel zur Alternativenordnung. Bei gleichem Zielerfüllungs-	a_3	5	10	8	9	
grad wird das zweitwichtigste Ziel herange- zogen etc.	a ₄	2	5	10	5	
	a ₅	6	4	4	6	
	Präfer	enzordnung	$z_3 \succ z_1$	$\succ z_{\Lambda} \succ z_{2}$		

→ Alternativenreihenfolge $a_1 > a_4 > a_2 > a_3 > a_5$

Spezielle Entscheidungsregeln

Zeilen- Z_1 Z_2 Z_3 Z_{Δ} Körth-Regel Min! 2/6 5/10 8/14 2/6 1 a₁ Maximierung des minimalen Zielerreichungs-Grad! Optimal ist diejenige Alternative, die in 3/6 4/10 9/10 4/10 1 a_2 Bezug auf den ungünstigsten Zielerreichungs-5/6 8/10 9/14 9/14 Grad unter allen Alternativen den größten Wert a_3 aufweist! 5/10 2/6 5/14 2/6 a₄ 1 4/10 4/10 6/14 4/10 a_{5}

	Z ₁	Z ₂	Z ₃	Z ₄
a ₁	2	5	10	8
a ₂	3	4	9	14
a_3	5	10	8	9
a ₄	2	5	10	5
a ₅	6	4	4	6

 \rightarrow a₃ ist optimal (gewährleistet in Bezug auf alle Ziele eine Erfüllung von ca. 64,3%). Keine andere Alternative ermöglicht einen höheren Prozentsatz hinsichtlich der Erfüllung aller Ziele!

Spezielle Entscheidungsregeln

Spezielle Lillscheidungsregeni						
Goal-Programming		Z ₁	Z ₂	Z ₃	Z ₄	Zeilen- Summe
	a ₁	10	3	4	2	19
	a ₂	9	4	5	8	26
Abweichungen von Zielvorgaben e _i	a ₃	7	2	6	3	18
minimieren!	a ₄	10	3	4	1	18
	a ₅	6	4	10	0	20
		$e_1 = 12,$	$e_2 = 8, e_3$	= 14, e ₄ =	6	

	Z ₁	Z ₂	z_3	Z ₄
a ₁	2	5	10	8
a ₂	3	4	9	14
a_3	5	10	8	9
a ₄	2	5	10	5
a ₅	6	4	4	6

 \Rightarrow a₃ und a₄ sind optimal! $a_3 \sim a_4 \succ a_1 \succ a_5 \succ a_2$ (Alternativenreihenfolge)

Kontroll- und Übungsaufgaben

→ Buch, Seite 40-42!

Grundlagen

Bei einem Entscheidungsproblem unter Ungewissheit handelt es sich um eine Situation mit mehreren möglichen Umweltzuständen, deren Eintrittswahrscheinlichkeiten dem Entscheidungsträger nicht bekannt sind.

→ Dominanzprinzip (Zustandsdominanz)

	S ₁	S ₂	s_3	S ₄
a ₁	6	5	8	3
a ₂	1	5	8	7
a ₃	5	10	8	9
a ₄	2	5	10	5
a ₅	6	4	4	6

Ein noch strengeres Prinzip ist die absolute Dominanz!

- → Schlechtester Wert der dominierenden Alternative ist besser als der beste Wert der dominierten Alternative!
- → Liegt nicht vor, da a₃ (5) kleiner als a₂ (8)

→ a₂ wird von a₃ dominiert!

	Spezielle Entscheidungsregeln								
(1)	Maximax-Regel		S ₁	S_2	s_3				
(2)	Maximin-Regel			- 2	-3				
(3)	Hurwicz-Regel	a ₁	32	17	11				
(4)	Savage-Niehans-Regel	a ₂	22	19	16				
(5)	Laplace-Regel	a_3	25	22	4				

Spezielle Entscheidungsregeln							
Maximax-Regel		s ₁	s_2	s_3	Maximax		
	a_1	32	17	11	32		
Wähle diejenige Alternative, bei der das maximal mögliche Ergebnis maximiert wird!	a_2	22	19	16	22		
	a_3	25	22	4	25		
$\Phi\left(a_{i}\right) = \max_{j} e_{ij} \to Max!$	Optimale Alternative				$\mathbf{a_1}$		

Spezielle Entscheidungsregeln **Maximin Maximin-Regel** S_1 S_2 S_3 32 17 11 11 a_1 Wähle diejenige Alternative, bei der das 22 **16** 19 16 minimal mögliche Ergebnis maximiert wird! a_2 25 22 4 4 a_3 $\Phi\left(a_{i}\right)=\min_{i}\,e_{ij}\to Max!$ Optimale Alternative $\mathbf{a_2}$

Die Maximin-Regel kann allerdings zu Entscheidungen führen, die nicht als rational zu bezeichnen sind!

	s_1	s_2	s_3	Minimum
a_1	1.000	0,99	100	0,99
a_2	1	1	1	1

Spezielle Entscheidungsregeln							
Hurwicz-Regel		s_1	s_2	s_3	Hurwicz λ = 0,4		
	a_1	32	17	11	19,4		
Kombination aus Maximin- und Minimax- Regel!	a_2	22	19	16	18,4		
$\Phi(a_i) = \lambda \cdot \max_i e_{ij} + (1 - \lambda) \cdot \min_i e_{ij}$	a_3	25	22	4	12,4		
$mit \ 0 \le \lambda \le 1$ Optimale Alternative bei $\lambda = 0,4$					$\mathbf{a_1}$		

 $\lambda > 0.5$: der Entscheider ist eher risikofreudig

 λ = 0,5: der Entscheider ist risikoneutral

 λ < 0,5: der Entscheider ist eher risikoscheu

Spezielle Entscheidungsregeln SNR Savage-Niehans-Regel S_1 S_2 S_3 32 17 11 5 a_1 22 19 16 10 Minimierung der maximalen Enttäuschung! a_2 (Minimierung der Schadensmatrix) 12 25 22 4 a_3 $s_{ij} = \max_{k} e_{kj} - e_{ij} \to Min!$ **Optimale Alternative** $\mathbf{a_1}$

	s_1	s_2	s_3	Maximum
a ₁	(32-32)	(22-17) 5	(16-11) 5	5
\mathbf{a}_2	(32-22) 10	(22-19)	(16-16) 0	10
a ₃	(32-25)	(22-22) 0	(16-4) 12	12

Spezielle Entscheidungsregeln								
Laplace-Regel		s_1	s_2	s ₃	Laplace			
	a_1	32	17	11	20			
Wähle diejenige Alternative, bei der die mit den jeweiligen Eintrittswahrscheinlichkeiten	a_2	22	19	16	19			
gewichtete Ergebnissumme maximiert wird!	a_3	25	22	4	17			
$\Phi(a_i) = \sum_{j=1}^n p_j \cdot e_{ij}$	0	ptimale /	Alternativ	/e	$\mathbf{a_1}$			

Prinzip des unzureichenden Grundes

Gleichwahrscheinlichkeit aller Umweltzustände: Die Begründung ist darin zu sehen, dass es bei Ungewissheit keinen Grund gibt anzunehmen, dass ein bestimmter Zustand eher eintreten wird als ein anderer.

Kontroll- und Übungsaufgaben

→ Buch, Seite 50!

Grundlagen

In einer Risikosituation ist der zukünftig eintretende Umweltzustand zum Entscheidungszeitpunkt unbekannt. Es ist dem Entscheidungsträger aber möglich, den relevanten Umweltzuständen (objektive oder subjektive) Eintrittswahrscheinlichkeiten zuzuordnen.

Objektive Anhaltspunkte zur Bestimmung der Wahrscheinlichkeit liegen z.B. in folgenden Entscheidungssituationen vor:

- Teilnahme an Glücksspielen, staatlichen Lotterien etc.: Berechnung der Wahrscheinlichkeiten aufgrund kombinatorischer Überlegungen
- Abschluss eines Versicherungsvertrages: Schätzung von Wahrscheinlichkeiten für unterschiedliche Schadensfälle anhand des versicherungstechnischen Datenmaterials.
- Neu- oder Gebrauchtwagenkauf: Schätzung jährlicher Reparaturkosten oder Wahrscheinlichkeitsverteilungen für die Lebensdauer z.B. auf Basis längerfristiger Kfz-Statistiken.
- Disposition bzgl. Lagerhaltung: Wahrscheinlichkeitsverteilungen für die pro Periode nachgefragte Menge der verschiedenen Güter können beispielsweise aus Zeitreihen früherer Perioden geschätzt werden.

Grundlagen

Dominanzkriterium und effiziente Alternativen bei Risiko

Eine Alternative a_i dominiert eine andere Alternative a_a nach dem Prinzip der Wahrscheinlichkeitsdominanz, wenn bei a die Wahrscheinlichkeit, mindestens einen Ergebniswert e'zu erzielen, nie kleiner und mindestens einmal größer als bei der Alternative a_q ist.

Formal gilt für Wahrscheinlichkeitsdominanz:

$$p(e_i \ge e') \ge p(e_q \ge e') \qquad \qquad \text{für alle} \quad e' \in \Re$$

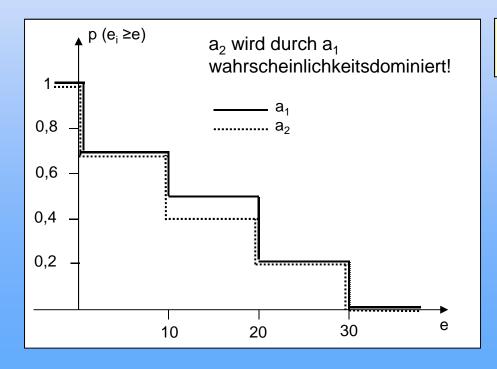
$$p(e_i \ge e') > p(e_q \ge e') \qquad \qquad \text{für mindestens ein}$$

und

$$p(e_i \ge e') > p(e_q \ge e')$$

für mindestens ein $e' \in \Re$

	Beispiel zur Wahrscheinlichkeitsdominanz										
	S_1	S ₂	S ₂	s4	e	0	10	20	30	>30	
	$p_1 = 0.3$		$p_3 = 0.2$	$p_4 = 0.3$	$p(e_1 = e)$	0,3	0,2	0,3	0,2	0	
a_1	20	10	30	0	$p(e_2 = e)$	0,3	0,3	0,2	0,2	0	
a ₁	20	10	30	0	$p(e_1 \ge e)$	1	0,7	0,5	0,2	0	
a_2	0	30	20	10	$p(e_2 \ge e)$	1	0,7	0,4	0,2	0	



$$p(e_1 \ge e) \begin{cases} > p(e_2 \ge e) & \text{für } 10 < e < 20 \\ = p(e_2 \ge e) & \text{für } e \le 10 \text{ und } e \ge 20 \end{cases}$$

Aus absoluter Dominanz/Zustandsdominanz folgt stets Wahrscheinlichkeitsdominanz, aber nicht umgekehrt!

Klassische Entscheidungskriterien

<u>µ-Prinzip</u>

Wähle die Handlungsalternative, bei der die Summe der wahrscheinlichkeitsgewichteten Ergebnisse maximal (minimal) ist!

$$\Phi(a_i) = \mu_i = \sum_{j=1}^n p_j \cdot e_{ij}$$

	$p_1 = 0,5$	$p_2 = 0.2$	$p_3 = 0.3$	$\Phi(a_i)=\mu_i$
a_1	40	20	10	27
a_2	120	-30	-20	48
a_3	30	10	60	35

→ keine allgemeingültige Verhaltensnorm; subjektive Risikopräferenz eines Entscheiders wird beim μ-Prinzip vernachlässigt!

→ a2 ist optimal!

Klassische Entscheidungskriterien

→ Kritik am µ-Prinzip (Buch, Seite 56-58)

Klassische Entscheidungskriterien

(μ,σ) -Prinzip

Die mit den Alternativen verbundenen Ergebnisverteilungen werden nicht nur anhand ihres Erwartungswertes, sondern auch anhand ihrer Standardabweichung beurteilt.

$$\sigma_i = \sqrt{\sum_{j=1}^n (e_{ij} - \mu_i)^2 \cdot p_j} \qquad \text{bzw.} \qquad \sigma_i = \sqrt{\sum_{j=1}^n (p_j \cdot e_{ij}^2) - \mu_i^2}$$

Präferenz-/Zielfunktion: $\Phi(\mu_i, \sigma_i) = \mu - \alpha \cdot \sigma$

Der (vorzugebende) Parameter α bringt hierbei die spezifische Risikoeinstellung des Entscheidungsträgers zum Ausdruck:

α > 0: der Entscheidungsträger ist risikoscheu

α < 0: der Entscheidungsträger ist risikofreudig

α = 0: der Entscheidungsträger ist risikoneutral

 \rightarrow (μ , σ)-Regeln können auch eine stärkere Gewichtung von μ oder anstelle der Standardabweichung σ die Varianz σ^2 in der Präferenzfunktion vorsehen!

Klassische Entscheidungskriterien

	$p_1 = 0,5$	$p_2 = 0,2$	$p_3 = 0.3$	$\Phi(a_i)=\mu_i$
a_1	40	20	10	27
a_2	120	-30	-20	48
a_3	30	10	60	35

$$(\mu,\sigma)\text{-Regel:}$$

$$\Phi(a_i) = 2\mu_i - 0.05 \cdot \sigma_i$$

$$\Phi(a_1) = 2 \cdot 27 - 0.05 \cdot 13.45 = 53.32$$

$$\Phi(a_2) = 2 \cdot 48 - 0.05 \cdot 72.08 = 92.39$$

$$\Phi(a_3) = 2 \cdot 35 - 0.05 \cdot 18.03 = 69.09$$

$$\begin{split} &\sigma_1^2 = (40 - 27)^2 \cdot 0.5 + (20 - 27)^2 \cdot 0.2 + (10 - 27)^2 \cdot 0.3 = 181 \\ &\sigma_2^2 = (120 - 48)^2 \cdot 0.5 + ((-30) - 48)^2 \cdot 0.2 + ((-20) - 48)^2 \cdot 0.3 = 5.196 \\ &\sigma_1^2 = (30 - 35)^2 \cdot 0.5 + (10 - 35)^2 \cdot 0.2 + (60 - 35)^2 \cdot 0.3 = 325 \\ &\Rightarrow \sigma_1 = 13.45; \ \sigma_2 = 72.08; \ \sigma_3 = 18.03 \end{split}$$

Alternative a₂ hat aufgrund der hier unterstellten minimalen
Risikoscheu nach wie vor den größten
Präferenzwert und wird gewählt.

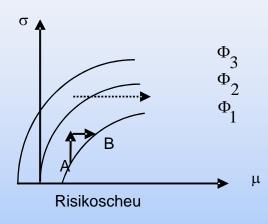
Klassische Entscheidungskriterien

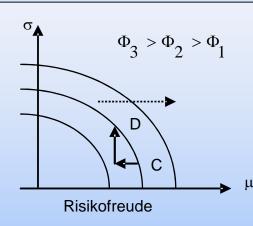
Der Präferenzwert ergibt sich auf Basis der durch die spezifische (μ , σ)-Regel festgelegten Funktionsvorschrift.

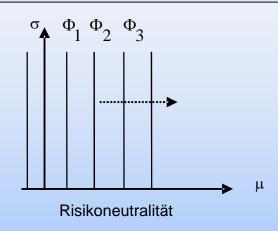
Hinsichtlich seiner Höhe lassen sich grundsätzlich folgende Fälle unterscheiden:

- 1. Bei *konstantem* Risiko (σ):
- → die Präferenzfunktion nimmt mit wachsendem Erwartungswert (µ) stets höhere Werte an, da ein höherer Erwartungswert generell als positiv bewertet wird.
- 2. Bei *konstantem* Erwartungswert (μ):
- → steigen die Präferenzwerte mit zunehmendem Risiko (=Risikofreude)
- → sinken die Präferenzwerte mit zunehmendem Risiko (=Risikoscheu).
- → ist die Präferenzfunktion im Fall der Risikoneutralität unabhängig von der Höhe des Risikos, es gilt das µ-Prinzip.

Klassische Entscheidungskriterien



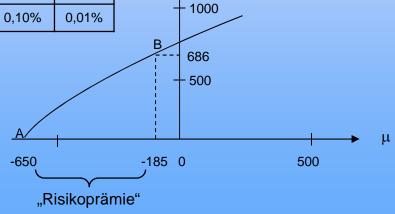




е	0	100	500	1.000	5.000	10.000	50.000
p(e)	30%	50%	19%	0,50%	0,39%	0,10%	0,01%

$$\mu = -185$$

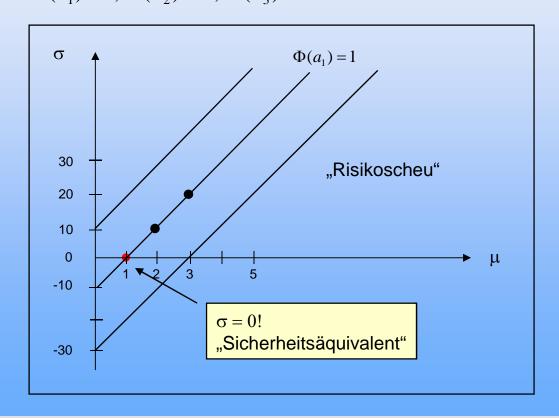
$$\sigma = \sqrt{\sum p_j \cdot (e_j - \mu)^2} = 686$$



σ

Klassische Entscheidungskriterien

Beispiel $\Phi(a_i) = \mu_i - 0.1 \cdot \sigma_i \implies \sigma_i = 10 \cdot \mu_i - 10 \cdot \Phi(a_i)$ $\Phi(a_1) = 1; \Phi(a_2) = 3; \Phi(a_3) = -1$



Klassische Entscheidungskriterien

Sicherheitsäquivalent S

Sicherer Betrag, der dem Entscheidungsträger als äquivalent mit der betrachteten unsicheren Alternative erscheint

→ Führt zum selben Präferenzwert wie die betrachtete Alternative

Bei Risikoneutralität gilt: S = E(X)

■ Bei Risikofeude gilt: S > E(X)

Bei Risikoscheu gilt: S < E(X)</p>

→ Siehe folgendes Beispiel

Klassische Entscheidungskriterien

	$p_1 = 0,5$	$p_2 = 0,2$	$p_3 = 0.3$	$\Phi(a_i)=\mu_i$
a_1	40	20	10	27
a_2	120	-30	-20	48
a_3	30	10	60	35

$$(\mu,\sigma)$$
-Regel:

$$\Phi(a_i) = 2\mu_i - 0.05 \cdot \sigma_i$$

Optimal war Alternative 2

$$\Phi(a_2) = 2 \cdot 48 - 0.05 \cdot 72.08 = 92.39$$

Sicherheitsäquivalent:

$$\rightarrow$$
 92,39 = 2 · S - 0,05 · 0 \rightarrow S = 46,19

- \rightarrow es ist damit kleiner als der Erwartungswert ($\mu_2 = 48$)
- → Risikoscheu!

Klassische Entscheidungskriterien

Große Bedeutung hat die Anwendung des (μ,σ) -Prinzips in der Portefeuille-Theorie gewonnen, die im Folgenden in ihren Grundzügen behandelt wird.

→ Präsentation Wertpapiermischung!

Erwartungsnutzenmodell (Bernoulli-Prinzip)

Petersburger Spiel

Bei diesem Gedankenexperiment wird eine (faire) Münze so lange geworfen (N-mal), bis zum ersten Mal "Zahl" oben liegt. Der Spieler bekommt dann 2^N Geldeinheiten (GE) als Gewinn ausgezahlt: Erscheint "Zahl" beim ersten, zweiten bzw. N-ten Wurf erhält der Spieler demnach 2¹ GE, 2² GE bzw. 2^N GE als Gewinn ausgezahlt.

→ Wahrscheinlichkeitsverteilung der Spielergebnisse

е	2 (=21)	4 (=22)	8 (=23)	2 ⁿ
p(e)	0,5 (= 2-1)	0,25 (=2-2)	0,125 (=2-3)	2 ⁻ⁿ

Erwarteter Spielerlös

$$\mu = 2 \cdot 0.5 + 4 \cdot 0.25 + 8 \cdot 0.125 + \dots = \sum_{k=1}^{\infty} (2^k \cdot 2^{-k}) = \sum_{k=1}^{\infty} 1 = \infty$$

→ aber: kaum jemand gibt mehr als 10-20 € für ein solches Spiel aus!

Erwartungsnutzenmodell (Bernoulli-Prinzip)

Nutzenfunktion

(Orientierung am Erwartungswert des Nutzens des Gewinns)

- → bei Bernoulli (1738): logarithmische Nutzenfunktion
- → Neumann/Morgenstern (1944): Axiomensystem (Buch S. 86)!

Nach dem Bernoulli-Prinzip ist die Alternative zu wählen, für die sich der größte Erwartungsnutzen ergibt. Hierzu sind die Ergebniswerte (gemäß der vorliegenden Funktionsvorschrift) in Nutzenwerte zu transformieren und der Erwartungswert dieser Nutzenwerte zu bestimmen.

$$\Phi(a_i) = E(u(e_{ij})) = \sum_{j=1}^n u(e_{ij}) \cdot p_j$$

Bezeichnung (häufig): Risikonutzenfunktion RNF

Erwartungsnutzenmodell (Bernoulli-Prinzip)

Beispiel

pi

Erg Matrix	Z 1	Z 2	Z 3	μ
a 1	81	144	225	136,80
a 2	100	36	324	154,40
а з	121	196	169	150,40
pi	0,5	0,2	0,3	
$u(e) = \sqrt{e}$	Z 1	Z 2	Z 3	E u (eij)
a 1	9	12	15	11,40
a 2	10	6	18	11,60
a 3	11	14	13	12,20

0,2

0,5

0,3

Sicherheitsäquivalent:

$$E(u(e)) = E(u(S)) = u(S)$$
$$\sqrt{S} = 12,2 \Leftrightarrow S = 148,84$$

Ein sicherer Betrag von 148,84 € führt zu demselben Erwartungsnutzen wie bei a₃

S (148,84) < µ (150,40) → risikoscheu!

[→] Entscheider wählt a₃ und verzichtet auf den höheren Erwartungswert von a₂ (risikoscheu)

Zur Wiederholung und Vertiefung

- → Fallstudie (Kap. 4.5)
- → Übungsaufgaben

Entscheidungen über Informationsbeschaffung

→ Siehe Kap. 5