Prof. Dr. Eckhard Liebscher Fachgruppe Mathematik

Aufgabenserie 9 zur Vorlesung "Mathematik für Betriebswirte"

1. Bilden Sie von folgenden Funktionen die ersten drei Ableitungen:

a)
$$f(x) = \sin(2x+1)$$
, b) $f(x) = (3x+1)^{-1}$.

Welche Nullstellen, Extremstellen und Wendestellen hat die Funktion in b)?

2. Bestimmen Sie die ersten drei Ableitungen der Funktion

$$f(x) = \frac{1}{x^2 + 2}.$$

Geben Sie die Intervalle an, in denen die Funktion monoton wachsend bzw. monoton fallend ist. Bestimmen Sie die Wendepunkte. Für welche x ist die Funktion konvex bzw. konkav?

3. Die Kostenfunktion für die Produktion eines Produktes in Abhängigkeit vom Produktionsausstoß x kann durch die Funktion

$$K(x) = x^3 + 19x^2 + 110x + 200$$

beschrieben werden. Wie groß sind die Grenzkosten für einen Ausstoß von x=10 ME (Mengeneinheiten)? Interpretieren Sie diesen Wert.

4. Führen Sie für die folgenden Funktionen eine Kurvendiskussion durch:

a)*
$$f(x) = x^2 e^{-2x}$$
, b)* $f(x) = \frac{x^2 - 4x - 5}{x + 3}$,

c)*
$$f(x) = -\frac{4}{x} + 1 - x$$
, **d)*** $f(x) = x^4 \ln x$.

Geben Sie die Nullstellen, die Polstellen, die Extremstellen und die Wendepunkte der jeweiligen Funktion an.

Nur für a) und d): In welchem Intervall ist die Funktion monoton wachsend, monoton fallend, konvex bzw. konkay?

5*.Ein Unternehmen operiere als Monopolist am Markt mit folgender PreisNachfragefunktion:

$$p(x) = 23 - 0.1x$$
.

Die Nachfrage wird durch einen entsprechenden Output befriedigt. Die Kostenfunktion des Unternehmens ist durch

$$K(x) = 0.01x^3 - 0.56x^2 + 26.6x$$

gegeben. Bestimmen Sie die Produktionsmenge x, für die der Gewinn maximal wird. Für welche Mengen x liegt das Unternehmen in der Gewinnzone?

6.* Betrachten Sie die Wachstumsfunktion

$$f(x) = 8e^{0.3x} \qquad \text{für } x \ge 1,$$

die die zeitliche Entwicklung des Produktionvolumens eines Wirtschaftssektors in Geldeinheiten (GE) in einer Region beschreibt. Die Variable x gibt die Zeit an.

- a) Bestimmen Sie die ersten drei Ableitungen der Funktion. Ist die Funktion konvex oder konkav?
- b) Zum Zeitpunkt x=20 interessiert man sich dafür, welche Wachstumsprognose (Änderung des Produktionsvolumens) näherungsweise für die nächsten Δt Zeiteinheiten unter Verwendung der Ableitung von f(x) gegeben werden kann. Notieren Sie dafür eine Formel. Vergleichen Sie die Prognoseformel für x=20 und x=30, wobei speziell $\Delta t=1$ angesetzt werden kann.
- c) Man betrachte die allgemeine Wachstumsfunktion

$$f(x) = a e^{bx}$$

für das Produktionsvolumen und bestimme die Parameter a,b so, dass zur Zeit 0 ein Volumen von 20GE und zur Zeit 10 ein Volumen von 30GE vorliegt.